Skip to main content

Học máy: Kỹ thuật Học sâu

Enrollment in this course is by invitation only

Học máy: Kỹ thuật Học sâu

Xin chào các bạn!

Học sâu (Deep Learning) có thể được coi là một tập con của học máy (Machine Learning). Đây là một lĩnh vực dựa trên việc học hỏi và cải thiện bằng các thuật toán máy tính. Trong khi học máy sử dụng các khái niệm đơn giả, học sâu hoạt động với các mạng lưới thần kinh sâu (deep neural networks), được thiết kế để bắt chước cách con người suy nghĩ và học hỏi.

Mục tiêu của khóa học này là cung cấp cho người học sự hiểu biết cơ bản về các neural networks hiện đại và các ứng dụng của chúng trong thị giác máy tính và nghiên cứu ngôn ngữ tự nhiên. Sau khi đã tìm hiểu các mô hình tuyến tính, gradient descent và đi sâu hơn vào các phương pháp tối ưu, điển hình cho việc huấn luyện deep neural networks ở môn MLP303x, chúng ta sẽ tiếp tục với các lớp phổ biến nhất của neural networks là lớp fuult conected (phân loại), lớp convolution (thị giác máy tính) và các lớp recurrent (xử lý ngôn ngữ tự nhiên). Sau đó, bạn sẽ sử dụng các lớp này để xây dựng các mô hình DNN đầy đủ sử dụng các framework Tensorflow và Keras. Trong các dự án trong khóa học, bạn sẽ giải quyết vấn đề nhận diện khuôn mặt đeo khẩu trang và phân loại văn bản độc hại bằng cách sử dụng Keras.

Chúc các bạn học tốt!


MỤC TIÊU MÔN HỌC

Sau khi học xong môn này, học viên sẽ đạt được các chuẩn kiến thức, kỹ năng đầu ra như sau:

  • Nắm được khái niệm cơ bản, ứng dụng và vai trò của Deep Learning hiện nay và cách sử dụng, triển khai các mạng shallow và deep neural network.
  • Nắm được các ứng dụng của DL vào trong thị giác máy tính thông qua kiến trúc mạng CNN (CNN, VGG, Resnet, Inception, MobileNet, EfficientNet): Bài toán phân loại hình ảnh, nhận diện vật thể, phân vùng theo nhóm, nhận diện khuôn mặt.
  • Nắm được ứng dụng của DL vào trong xử lý ngôn ngữ tự nhiên thông qua các kiến trúc mạng về RNN (RNN, LSTM, GRU, Attention và Transformation): Nhận diện cảm xúc thông qua văn bản, dịch máy, xây dựng và sử dụng Word Embedding.
  • Sử dụng được Tensorflow để xây dựng một dự án hoàn chỉnh về Machine Learning và Deep Learning.
  • Có năng lực về chuẩn hóa dữ liệu, xây dựng và đánh giá, phân tích lỗi, cải thiện và tối ưu model trong các dự án ML/DL.


TRẢI NGHIỆM HỌC TẬP

Để bắt đầu, các bạn nên dành một vài phút khám phá môn học và cấu trúc chung. Môn học sẽ có 3 phần với 13 bài học. Xuyên suốt các bài học và cuối mỗi học phần, các bài thực hành Lab và bài tập lớn (Project) sẽ giúp các bạn tăng cường việc ghi nhớ và vận dung lý thuyết đã học vào các bài toán thực tế. Để việc học tập được hiệu quả, hãy luôn trau dồi kiến thức, không ngừng học hỏi, nghiên cứu và lập cho mình một kế hoạch học tập hợp lý để hoàn thành khóa học một cách xuất sắc.

Trong thời gian học (dự kiến là 6 tuần), việc phân bổ tuần học là rất quan trọng. Nếu các bạn có bất cứ câu hỏi nào hãy kết nối với Mentor để được giải đáp.


CẤU TRÚC MÔN HỌC

Phần 1: Tổng quan về học sâu

  • Bài 1: Giới thiệu về học sâu
  • Bài 2: Xử lý ảnh với OpenCV
  • Bài 3: Xử lý text với Python
  • Bài 4: Xử lý ngôn ngữ tự nhiên với Python

Phần 2: Học sâu với Computer Vision (Thị giác máy tính)

  • Bài 5: Fundamental Convolutional Neural Network (CNN - mạng tích chập)
  • Bài 6: Các kiến trúc CNN cơ bản
  • Bài 7: Object Detection (Phát hiện đối tượng)
  • Bài 8: Image Segmentation (phân khúc hình ảnh)
  • Bài 9: Face Recognition
  • Assignment 1 - Nhận diện đeo khẩu trang

Phần 3: Học sâu với Natural Language Processing (Xử lý ngôn ngữ tự nhiên)

  • Bài 10: Recurrent Neural Networks (RNN - mạng nơron hồi tiếp)
  • Bài 11: Word Embeddings
  • Bài 12: Sequence models)
  • Bài 13: Transformer Network
  • Assignment 2 - Phân loại bình luận độc hại


CHUYÊN GIA THIẾT KẾ VÀ PHẢN BIỆN MÔN HỌC

THIẾT KẾ MÔN HỌC: TS. Nguyễn Văn Vinh

  • Giảng viên & thành viên cốt lõi của Phòng thí nghiệm AI, Đại học Công nghệ - VNU
  • Chuyên gia tư vấn AI cho DPS & Fsoft
  • Tiến sĩ Khoa học máy tính, Viện Khoa học và Công nghệ tiên tiến Nhật Bản

PHẢN BIỆN MÔN HỌC: TS. Trần Tuấn Anh

  • Giảng viên Đại học Khoa học Tự nhiên - ĐHQG-HCM
  • Tiến sĩ Khoa học Máy tính, Đại học Quốc gia Chonnam, Hàn Quốc
  • Thạc sĩ Toán học ứng dụng về AI & Machine Learning, Đại học Orleans, Pháp

CHUYÊN GIA THIẾT KẾ VÀ PHẢN BIỆN KHUNG CHƯƠNG TRÌNH

TS. Từ Minh Phương

  • Trưởng khoa CNTT, Đại học Bưu chính viễn thông (PTIT)
  • Chuyên gia tư vấn công nghệ AI & Machine learning
  • Trưởng phòng Lab Học máy & Ứng dụng của PTIT

TS. Hoàng Anh Minh

  • Quản lý R&D, Chief Scientist FPT Software, LA Office

TS. Lê Hải Sơn

  • Chuyên gia về Machine Learning, FPT Technology Innovation (FTI)
  • Tiến sĩ khoa học máy tính, Laboratoire d’Informatique et de Mécanique pour les Sciences de l’Ingénieur (LIMSI), Université Paris-Sud, Orsay, Pháp
  • Các lĩnh vực nghiên cứu: Xử lý ngôn ngữ tự nhiên, nhận dạng tiếng nói, xử lý ảnh, học máy, học sâu

NGUỒN HỌC LIỆU

Trong thời đại hiện nay, mỗi môn học đều có nhiều nguồn tài liệu liên quan kể cả sách in và online, FUNiX Way không quy định một nguồn học liệu cụ thể mà khuyến cáo để học viên chọn được nguồn phù hợp nhất cho mình. Trong quá trình học từ nhiều nguồn khác nhau theo lựa chọn cá nhân đó, khi sinh viên phát sinh câu hỏi thì sẽ được kết nối nhanh nhất với mentor để được giải đáp. Toàn bộ phần đánh giá bao gồm các câu hỏi trắc nghiệm, bài tập, dự án và thi vấn đáp do FUNiX thiết kế, xây dựng và thực hiện.

Các môn học của FUNiX không quy định bắt buộc tài liệu học tập, sinh viên có thể chủ động tìm và học từ bất kỳ nguồn nào phù hợp, kể cả sách in hay nguồn học liệu online (MOOC) hay các website. Việc sử dụng các nguồn đó do học viên chịu trách nhiệm và đảm bảo tuân thủ các chính sách của chủ sở hữu nguồn, trừ trường hợp họ có sự hợp tác chính thức với FUNiX. Nếu cần hỗ trợ, học viên có thể liên hệ phòng đào tạo FUNiX để được hướng dẫn.

Dưới đây là một số nguồn học liệu của môn học mà học viên có thể tham khảo sử dụng. Việc liệt kê nguồn dưới đây không nhất thiết hàm ý rằng FUNiX có sự hợp tác chính thức với chủ sở hữu của nguồn: Coursera, tutorialspoint, edX Training, or Udemy.


KÊNH PHẢN HỒI

FUNiX sẵn sàng đón nhận và trao đổi về mọi ý kiến góp ý, phản hồi liên quan đến học liệu qua email program@funix.edu.vn