Introduction to Data Science
ABOUT THE COURSE!
This Introduction to Data Science course aims at providing learners with an overview of Data Science and its core concepts. Particularly, Data Science professionals will introduce definition and functions of Data Science as well as its tools and algorithm applied on our daily basis. Learners also have a chance to explore what skills they need to master to pursue a career in this field. Learners will learn about qualities that distinguish Data Science from other professionals. More importantly, learners will learn about analytics and vital roles of data scientists in this process as well as about story-telling and the importance of an effective final deliverable.
To begin the course, let's take a few minutes to explore the course site. Review the material we’ll cover each week, and preview the assignments/projects/quizzes you’ll need to complete to pass the course.
Main concepts are delivered through videos, demos and hands-on exercises.
COURSE INFORMATION
Course code: | DSP301x |
Course name: | Data Science |
Credits: | 3 |
Estimated Time: | 6 weeks. Student should allocate at average of 2 hours/a day to complete the course. |
COURSE OBJECTIVES
- Understand the basic concepts of Data Science
- Interpret Data Science Topics
- Acknowledge the application of Data Science
- Comprehend and Practice with tool for data science
- Understand the methodology used in data science, steps to solve data science problems from the problem, collecting and analyzing data, building algorithms and understanding feedback after the algorithm is installed put and use
- Understand the basic concepts of descriptive statistics and probability
COURSE STRUCTURE
Module 1: What is Data Science?
- Lesson 1: Defining Data Science and What Data Scientists Do
- Lesson 2: Data Science Topics
- Lesson 3: Data Science in Business
- Lesson 4: Introducing Jupyter Notebooks
Module 2: Data Science Methodology
- Lesson 5: From Problem to Approach
- Lesson 6: From Requirements to Collection
- Lesson 7: From Understanding to Preparation
- Lesson 8: From Modeling to Evaluation
- Lesson 9: From Deployment to Feedback
Module 3: Statistics & Probability
- Lesson 10: Descriptive statistics
- Lesson 11: Correlation and Regression
- Lesson 12: Probability
- Lesson 13: Probability Distributions
Module 4: Python for Data Science
- Lesson 14: Python Basics with Data Structures
- Lesson 15: Python Advance with OOP and API
- Lesson 16: Numpy in Python
- Lesson 17: Working with data and Pandas
DEVELOPMENT TEAM
COURSE DESIGNERS
M.S Vu Thuong Huyen
|
Ph.D. Tran Hong Viet
|
REVIEWERS
Course Reviewer
Ph.D. Dang Hoang Vu |
|
Assoc. Prof. Tu Minh Phuong |
Ph.D. Nguyen Van Vinh |
Ph.D. Tran The Trung |
|
|
|
Learning resources
In modern times, each subject has numerous relevant studying materials including printed and online books. FUNiX Way does not provide a specific learning resource but offers recommendation for students to choose the most appropriate source to them. In the process of studying from many different sources based on that personal choice, students will be timely connected to a mentor to respond to their questions. All the assessments including multiple choice questions, exercises, projects and oral exams are designed, developed and conducted by FUNiX.
Learners are under no obligation to choose a fixed learning material. They are encouraged to actively find and study from any appropriate sources including printed textbooks, MOOCs or websites. Students are on their own responsibilities in using these learning sources and ensuring full compliance with the source owners’ policies; except for the case in which they have an official cooperation with FUNiX. For further support, feel free to contact FUNiX Academic Department for detailed instructions.
Learning resources are recommended below. It should be noted that listing these learning sources does not necessarily imply that FUNiX has an official partnership with the source’s owner: Coursera, tutorialspoint, edX Training, Udemy or Standford.
Feedback channel
FUNiX is ready to receive and discuss all comments and feedback related to learning materials via email program@funix.edu.vn